
Bilkent University

GE401

Progress Report for CS Role Version V

Assistant Eye

Team 9

Behiç Buğra Bacanlı

Mevlüt Türker Garip

Burak Işık

Yunus Burak Suçsuz

Melik Koray Üster

Çağlar Varan

Date

13.04.2012

2

Table of Contents

Introduction ... 3

Proposed System Overview .. 4

High Level Software Design and Underlying Decisions .. 5

Task Decomposition and Software Components .. 6

Appropriate Transformations ... 6

Motion Detection ... 6

Eye Movement Detection .. 6

Low Level Software Design ... 8

Algorithm Pseudocodes ... 9

Complexity Analysis .. 11

Potential Limitations and Problems ... 11

Use-case Scenarios.. 12

Software Test Results with the Use Cases .. 13

References ... 17

Figure 1 - Software Components with Their Interactions ... 7

Figure 2 - Flowchart of the Software .. 8

Figure 3 - Use Case Diagram of the Software .. 12

Figure 4 - The Software Output when User Looks Right ... 13

Figure 5 - The Software Output when User Looks Left ... 14

Figure 6 - The Software Output when User Looks Up ... 15

Figure 7 - The Software Output when User Looks Down .. 16

file:///C:/Users/turkersoft/Desktop/GE402/Progress%20Report%20V%20For%20CS.docx%23_Toc322102784
file:///C:/Users/turkersoft/Desktop/GE402/Progress%20Report%20V%20For%20CS.docx%23_Toc322102785
file:///C:/Users/turkersoft/Desktop/GE402/Progress%20Report%20V%20For%20CS.docx%23_Toc322102786

3

Introduction

 This document aims to provide a detailed description of the progress on structure of the

overall system and its components. The eye-detection system is designed for the wheelchair used

by completely paralyzed people. The name of the product produced by our company EyeCue is

assistant eye. The content of this document will partly be constructed on the previous software

module and task specification document. In this document, the software description will start

with a system overview supported by software architecture diagram which depicts the input

output interaction between subcomponents of the system. Afterwards, the software modules in

these components will be explained with their characteristics and constraints. Finally, the low-

level software design will be introduced, supported by algorithm flowcharts, pseudocodes and

complexity analysis of the software. To create a better sense of the software, use case scenarios

and their test results will be included at the end.

4

Proposed System Overview

 The software continuously captures images of the eye one after another using a camera.

After applying several transformations, which will be explained in detail in the next sections,

motion detector will be activated. The motion will be detected by comparing two consequent

images in pixel levels. Since the pixel-level motion detection is highly sensitive to even a little

movements on the face, the prior transformations will decrease the sensitivity by manipulating

the image properties such as its contrast and sharpness of the moving edges.

 The camera will be placed near to the eye to detect only the movements of the eye. The

calibration of the software will play a very important role for the accuracy of the software. The

calibration values includes the threshold values of the distance of the eye from the center and the

threshold value of the number of pixels required to be detected in order to trigger the motion

detection. In other words, these threshold values will be changed according to the placement of

the camera. If it is placed very near to eye, the number of pixels threshold and distance of the eye

threshold will be set to a high value since lots of pixels will be detected and the distance, which

the eye will move, will be significantly large.

 After the eye motion is detected, the software will transmit the corresponding signals to

the engine driver circuit through serial port. The software uses a highly developed open source

image processing library called OpenCV. With the help of this library, the system managed to

response to the user interaction in real-time speed.

5

High Level Software Design and Underlying Decisions

 The software is implemented based on the well-known image processing library called

OpenCV. The OpenCV is a open source library that is written in C and can be integrated into the

Java applications by using another library called JavaCV. Since the functions of the OpenCV is

installed in the dll system files, its functions can only be invoked by using Java native interface.

JavaCV is the library which is written especially for this purpose. It offers the exact functions of

the OpenCV and delegates each function call in the Java application to the corresponding

function in the native binaries of the OpenCV dll system files.

 The software first applies Gaussian transform to the captured image, which basically

blurs it with all the edges on the face inside. With this transformation, the high sensitivity of the

motion detector will be decreased to the reasonable level for the program accuracy. In other

words, all the unnecessary small movements in pixel level will be tolerated.

 After this procedure, all the captured images will be converted from RGB to the

grayscale in order to ease the job of the motion detector. In this way, the detector will not have to

deal with the complexity of a colored scale. After these transformations, the motion detector

takes the absolute difference of two consequent images. That gives the pixel locations of the

parts which moved; those pixels will be present in the image array and other pixels will be

zeroed by the function diff. After that, the software will apply another transformation that

converts this array to a binary array where existing pixels will be set to 255 and others to 0.

 Last procedure will iterate through this array and find the mass center of the existing

pixels. If the center is located left more than distance threshold, that means the eye moved to the

right and the same logic exists with the other eye movement directions.

6

Task Decomposition and Software Components

 There are three main tasks of the software for a successful detection:

 Appropriate Transformations

 For the software to detect the motion successfully, some image transformations are

required. As also described in the previous sections, first transformation for this purpose is the

Gaussian transformation, which blurs the image, in order to calibrate the sensitivity of the motion

detector to a reasonable level. The other transformation is the RGB to Grayscale conversion to

reduce the complexity of a colored scale. This task is performed successfully by the OpenCV

component of the software and provides a significant performance improvement.

 Motion Detection

 After the transformations, motion detector component takes the absolute difference of the

two consequent images and keeps the pixels moved in the image array. After the absolute

difference, detector applies the final transformation that will set the values of the existent pixels

to 255 and others to zero. This result array is the most important output of the software because

the next task, which is the detection of the eye movement, is dependent on this output array.

 Eye Movement Detection

 This task uses the output array of the Motion Detection task. It iterates through this array

and finds the mass center of the pixels whose values are 255. Since the camera is placed very

near to the eye, the mass center of those pixels gives the exact location of the eye. Finally,

software identifies the eye movement direction by comparing this mass center of the eye with the

center coordinates of the image and sends the movement signal to the engine driver circuit

through serial communication.

7

Figure 1 - Software Components with Their Interactions

8

Low Level Software Design

Figure 2 - Flowchart of the Software

9

 Algorithm Pseudocodes

void main(...){

 OpenCVFrameGrabber grabber = new OpenCVFrameGrabber(1);

 grabber.start();

 IplImage frame = grabber.grab();

 int[] image array = new int[480X640];

 String eyePosition="ORTA";

 while(frame is visible && (frame = grabber.grab()) is not null) {

 gaussianTransform(frame);

 RGBtoGray(frame);

 if(previousFrame is not null) {

 absoluteDifference(frame, previousFrame, diff);

 thresholdToBinary(diff);

 showImage(diff);

 diff.getBufferedImage().getRaster().getPixels(..., array);

 String result = detectEyeMotion(array);

 if(result is not null)

 eyePosition = result;

 System.out.println(eyePosition);

 }

 }

 grabber.stop();

}

10

String detectEyeMotion(int[] array) {

 int column = 0;

 int row = 0;

 int count = 0;

 for(iterate array.length times){

 if(array[i]==255){

 column += (i % 640);

 row += (i / 480);

 count++;

 }

 }

 if(count < 5000) // Apply number of pixels threshold

 return null;

 else{

 row /= count; // Find the center mass of the pixels

 column /= count;

 if(column > 370)

 return "SOL";

 else if(column < 270) // Detect the eye direction according to the

 return "SAG"; // center mass using distance thresholds

 else if(row>350)

 return "ASAGI";

 else if(row<180)

 return "YUKARI";

 else

 return "ORTA";

 }

}

11

 Complexity Analysis

 Using the OpenCV library has increased performance of the software significantly since

it uses optimized image analysis techniques for the common functions. With this way, software

manages to work in linear time which is O(n). I did not consider the main while loop where the

camera captures the images because it does not affect the response time and continues infinitely

as long as the program is running. OpenCV analyzes the images in linear time and my eye

motion detector iterates through the image array with a single for loop; therefore, also works in

linear time.

 Potential Limitations and Problems

 The most significant problem is the calibration. The success of the software highly

depends on the success in setting the correct threshold values. The correct calibration can only be

done when the camera is placed and held still from the head.

 Another problem is the eye blinking. Since the software detects all the motions, eye

blinking often dominates the detection of the eye. For example, if the user look right and blinks,

the mass center of the moving part will probably be at the center but user actually looked right.

 These problems will be handled successfully in the integration and testing; because, only

in that time, we will be able to integrate the product, place the camera on the head and make it

hold still. During that progress, the threshold values can be set accordingly and the problem can

be eliminated. That is why calibration is the most important task before the product is completed.

12

Use-case Scenarios

Figure 3 - Use Case Diagram of the Software

13

Software Test Results with the Use Cases

Figure 4 - The Software Output when User Looks Right

14

Figure 5 - The Software Output when User Looks Left

15

Figure 6 - The Software Output when User Looks Up

16

Figure 7 - The Software Output when User Looks Down

17

References

[1] <http://opencv.willowgarage.com/wiki/>

[2] <https://www.gliffy.com/>

[3] <http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html>

http://opencv.willowgarage.com/wiki/
https://www.gliffy.com/
http://www.cs.iit.edu/~agam/cs512/lect-notes/opencv-intro/opencv-intro.html

